IDEAS home Printed from https://ideas.repec.org/a/ibn/eerjnl/v12y2022i1p45.html
   My bibliography  Save this article

Long Term Electricity Load Forecast Based on Machine Learning for Cameroon’s Power System

Author

Listed:
  • Terence K. Lukong
  • Derick N. Tanyu
  • Thomas T. Tatietse
  • Detlef Schulz

Abstract

A reliable power supply has long been identified as an important economic growth parameter. Electricity load forecasts predict the future behavior of the electricity load. Carrying out a forecast is important for real-time dispatching of power, grid maintenance scheduling, grid expansion planning, and generation planning depending on the forecasting horizon. Most of the methods used in long-term load forecasting are regressions and are limited to predicting peak loads of a yearly or monthly resolution with low accuracy. In this paper, we propose a method based on long short-term memory-recurrent neural networks (LSTM-RNN) cells with relations between identified influential econometric load-driving parameters which includes- the Gross Domestic Product (GDP), Population (H), and past Electric Load Data. To the best of our knowledge, the use of the GDP and H as two additional independent variables in load forecast modelling using machine learning techniques is a novelty in Cameroon. A comparison was performed between a linear regression (LR)-based long-term load forecast model (a model currently used by the Transmission System Operator of Cameroon) and LSTM-RNNs model constructed. The results generated were evaluated using a Mean Absolute Percentage Error (MAPE) within the same period of evaluation, and the overall value of the MAPE obtained for LSTM-RNNs model was 5.4962 whereas that for the LR model was 7.5422. Based on these results, the LSTM-RNN model is considered highly accurate and competent. The model was used to generate a forecast for the period of 2022–2026 with an hourly resolution. A MAPE of 5.4962 was obtained with a computational time of approximately ten minutes, making the model vital for offline use by utilities due to its capacity to quantitatively and accurately predict long-term load with an hourly resolution.

Suggested Citation

  • Terence K. Lukong & Derick N. Tanyu & Thomas T. Tatietse & Detlef Schulz, 2022. "Long Term Electricity Load Forecast Based on Machine Learning for Cameroon’s Power System," Energy and Environment Research, Canadian Center of Science and Education, vol. 12(1), pages 1-45, June.
  • Handle: RePEc:ibn:eerjnl:v:12:y:2022:i:1:p:45
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/eer/article/download/0/0/47276/50647
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/eer/article/view/0/47276
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:eerjnl:v:12:y:2022:i:1:p:45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.