IDEAS home Printed from https://ideas.repec.org/a/ibn/cisjnl/v14y2021i4p65.html
   My bibliography  Save this article

Simulation Research on the Complexity of Life Game

Author

Listed:
  • Jiacheng Huang

Abstract

The relationship between complexity and various factors is explored through the simulation of the three neighbor ways of the game of life. It mainly discusses the state evolution process of cell populations under various evolutionary laws, various environmental scales and various initial states. Based on the discovery of a novel, long-lived and simple cell with an initial state, the periodic and stable cell morphology in Game of Life is introduced, thus reflecting the related complexity factors and changes. By simulating various environmental boundaries and comparing the steady-state graphs, it is concluded that a closed system will cause certain limitations in the final outcome. The limited environment will prevent the cell from expanding outward, but it can also create more periodic patterns. A limited environment is simultaneously an important factor in simplifying the system. In addition to the environment, the edge of chaos is also an important factor in the complexity of the system. An appropriate evolution rule can help the entire system find a balance in the chaos and present stable and interesting patterns. In addition, the correct neighbor method has a positive effect on the change of the cell. Finally, an infinite loop mode is set up to illustrate once again the wonder and complexity of Game of Life.

Suggested Citation

  • Jiacheng Huang, 2021. "Simulation Research on the Complexity of Life Game," Computer and Information Science, Canadian Center of Science and Education, vol. 14(4), pages 1-65, November.
  • Handle: RePEc:ibn:cisjnl:v:14:y:2021:i:4:p:65
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/cis/article/download/0/0/46168/49207
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/cis/article/view/0/46168
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mier, J.A. & Sánchez, R. & Newman, D.E., 2020. "Tracer particle transport dynamics in the diffusive sandpile cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moghari, Somaye & Ghorani, Maryam, 2022. "A symbiosis between cellular automata and dynamic weighted multigraph with application on virus spread modeling," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:cisjnl:v:14:y:2021:i:4:p:65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.