IDEAS home Printed from https://ideas.repec.org/a/hur/ijarbs/v6y2016i11p542-555.html
   My bibliography  Save this article

A Comparative Study on Credit Risk Assesment of Enterprises In Turkey

Author

Listed:
  • Olcay Erdogan
  • Zafer Konakli
  • Adnan Hodzic

Abstract

Credit risk prediction models attempt to predict whether a business will experience to be in a level of investment, speculative or below investment. The purpose of this paper is to propose an alternative model for predicting failure. The constructed credit rating model was on a sample data that consists of financial ratios from 356 enterprises that are listed on the Istanbul Stock Exchange. The data covers observations running from the first quarter of 2014 to the end of year. We have classified 356 enterprises into three levels using 18 parameters for each. The applied methods are discriminant analysis and Adaptive Neuro Fuzzy Inference Systems (ANFIS). The study supports building a balanced financial environment and help to determine the firms which are appropriate for credit loan.

Suggested Citation

  • Olcay Erdogan & Zafer Konakli & Adnan Hodzic, 2016. "A Comparative Study on Credit Risk Assesment of Enterprises In Turkey," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 6(11), pages 542-555, November.
  • Handle: RePEc:hur:ijarbs:v:6:y:2016:i:11:p:542-555
    as

    Download full text from publisher

    File URL: http://hrmars.com/hrmars_papers/A_Comparative_Study_On_Credit_Risk_Assesment_Of_Enterprises_In_Turkey.pdf
    Download Restriction: no

    File URL: http://hrmars.com/hrmars_papers/A_Comparative_Study_On_Credit_Risk_Assesment_Of_Enterprises_In_Turkey.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    2. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    3. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    4. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    5. Lillian Cheung & Amnon Levy, 1998. "An integrative analysis of business bankruptcy in Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
    6. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    8. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    9. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    10. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    11. Hu, Yu-Chiang & Ansell, Jake, 2007. "Measuring retail company performance using credit scoring techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1595-1606, December.
    12. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    13. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    14. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    15. Eleonora Bartoloni & Maurizio Baussola, 2014. "Financial Performance in Manufacturing Firms: A Comparison Between Parametric and Non-Parametric Approaches," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 49(1), pages 32-45, January.
    16. Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
    17. repec:ctc:sdimse:dime21_01 is not listed on IDEAS
    18. Michal Karas & Mária Režňáková, 2017. "The Potential of Dynamic Indicator in Development of the Bankruptcy Prediction Models: the Case of Construction Companies," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 641-652.
    19. Aaro Hazak & Kadri Männasoo, 2007. "Indicators of corporate default : an EU based empirical study," Bank of Estonia Working Papers 2007-10, Bank of Estonia, revised 04 Sep 2007.
    20. Zaghdoudi Khemais & Djebali Nesrine & Mezni Mohamed, 2016. "Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(4), pages 39-53, April.
    21. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hur:ijarbs:v:6:y:2016:i:11:p:542-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hassan Danial Aslam (email available below). General contact details of provider: http://hrmars.com/index.php/pages/detail/IJARBSS .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.