Author
Listed:
- Quanlei Wang
- Ning Zhang
- Kun Jiang
- Chao Ma
- Zhaochen Zhou
- Chunquan Dai
Abstract
China is gradually transitioning from the “tunnel construction era” to the “tunnel maintenance era,” and more and more operating tunnels need to be inspected for diseases. With the continuous development of computer vision, the automatic identification of tunnel lining cracks with computers has gradually been applied in engineering. On the basis of summarizing the weaknesses and strengths of previous studies, this paper first uses the improved multiscale Retinex algorithm to filter the collected tunnel crack images and introduces the eight-direction Sobel edge detection operator to extract the edges of the cracks. Perform mathematical morphological operations on the image after edge extraction, and use the principle of the smallest enclosing rectangle to remove the isolated points of the image. Finally, the performance of the algorithm is judged by the objective evaluation index of the image, the accuracy of crack recognition, and the running time of the algorithm. The image filtering algorithm proposed in this paper can better preserve the edges of the image while enhancing the image. The objective evaluation indexes of the image have been improved significantly, and the main body of the crack can be accurately identified. The overall crack recognition accuracy rate can reach 97.5%, which is higher than the existing tunnel lining crack recognition algorithm, and the average calculation time for each image is shorter. This algorithm has high research significance and engineering application value.
Suggested Citation
Quanlei Wang & Ning Zhang & Kun Jiang & Chao Ma & Zhaochen Zhou & Chunquan Dai, 2021.
"Tunnel Lining Crack Recognition Based on Improved Multiscale Retinex and Sobel Edge Detection,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, September.
Handle:
RePEc:hin:jnlmpe:9969464
DOI: 10.1155/2021/9969464
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9969464. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.