IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9948733.html
   My bibliography  Save this article

Personalized Emotion Recognition and Emotion Prediction System Based on Cloud Computing

Author

Listed:
  • Wenqiang Tian

Abstract

Promoting economic development and improving people’s quality of life have a lot to do with the continuous improvement of cloud computing technology and the rapid expansion of applications. Emotions play an important role in all aspects of human life. It is difficult to avoid the influence of inner emotions in people’s behavior and deduction. This article mainly studies the personalized emotion recognition and emotion prediction system based on cloud computing. This paper proposes a method of intelligently identifying users’ emotional states through the use of cloud computing. First, an emotional induction experiment is designed to induce the testers’ positive, neutral, and negative three basic emotional states and collect cloud data and EEG under different emotional states. Then, the cloud data is processed and analyzed to extract emotional features. After that, this paper constructs a facial emotion prediction system based on cloud computing data model, which consists of face detection and facial emotion recognition. The system uses the SVM algorithm for face detection, uses the temporal feature algorithm for facial emotion analysis, and finally uses the classification method of machine learning to classify emotions, so as to realize the purpose of identifying the user’s emotional state through cloud computing technology. Experimental data shows that the EEG signal emotion recognition method based on time domain features performs best has better generalization ability and is improved by 6.3% on the basis of traditional methods. The experimental results show that the personalized emotion recognition method based on cloud computing is more effective than traditional methods.

Suggested Citation

  • Wenqiang Tian, 2021. "Personalized Emotion Recognition and Emotion Prediction System Based on Cloud Computing," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, May.
  • Handle: RePEc:hin:jnlmpe:9948733
    DOI: 10.1155/2021/9948733
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9948733.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9948733.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9948733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9948733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.