IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9938869.html
   My bibliography  Save this article

A Time-Dependent Creep Constitutive Model of Deep Surrounding Rock under Temperature-Stress Coupling

Author

Listed:
  • Xiaofeng Li
  • Zhixiang Yin

Abstract

In order to study the creep behavior of the surrounding rock of Hengda coal mine in Fuxin under different temperatures, the triaxial creep test of sandstone is carried out by the MTS815.02 test system. The relationship between damage variables and temperature is constructed based on the Weibull distribution of the meso-probability voxel intensity. Aiming at the nonlinear characteristics of rock creep, a nonlinear viscous pot element and a nonlinear spring element are proposed. The two linear viscous pot elements and one linear spring element in the Nishihara model can be replaced separately. Thus, an unsteady parameter creep model is established. The comparison between the Nishihara model curve and the model and the experimental curves in this article has been added to the article. Furthermore, the superiority of this model can be proved. The results show that the established variable-time aging creep model not only can describe the rock attenuation creep and stable creep deformation characteristics but also can make up for the shortcomings of the traditional creep model that cannot describe the accelerated creep characteristics. Moreover, it predicts the development law of creep deformation well. The model is in good agreement with the test curve, which shows the correctness and rationality of the model. It has guiding significance for actual engineering support and prediction of long-term deformation of surrounding rock.

Suggested Citation

  • Xiaofeng Li & Zhixiang Yin, 2021. "A Time-Dependent Creep Constitutive Model of Deep Surrounding Rock under Temperature-Stress Coupling," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, June.
  • Handle: RePEc:hin:jnlmpe:9938869
    DOI: 10.1155/2021/9938869
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9938869.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9938869.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9938869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Huidong & Chen, Youliang & Chen, Qijian & Du, Xi & Xiao, Peng & Wang, Suran & Dong, Yang & Pan, Yungui & Ma, Hao & Long, Zhiyu, 2023. "A true triaxial creep constitutive model of rock considering the coupled thermo-mechanical damage," Energy, Elsevier, vol. 285(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9938869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.