Author
Listed:
- Maryam Sadiq
- Tahir Mehmood
Abstract
Survival systems are difficult to analyze in the presence of extreme observations and multicollinearity. Finding appropriate models that provide a robust description of such survival systems and that address the smooth hazards in the context of covariates can be challenging given the sheer number of possibilities. Survival time algorithms that evaluate the efficiency of models in the presence of extreme observations over different datasets provide an effective tool to identify robust systems. However, the existing algorithms addressing the analysis of survival systems are limited in long-term evaluations. Therefore, an algorithm that can analyze survival time response on high-dimensional complex survival systems having extreme observations is developed which explores large margins dynamically. This algorithm is developed as a conjugate of flexible parametric models and partial least squares to estimate smooth, flexible, and robust functions to extrapolate the survival model in long-term evaluations in the presence of extreme observations. The algorithm is tested and validated using four distributions based on a simulated dataset generated from the Weibull distribution and compared with partial least squares-Cox regression. The comparison shows its flexibility and efficiency in handling different survival systems in the presence of extreme values. The algorithm is also used to analyze four real datasets of breast cancer survival time, each containing seven gene signatures. The coefficients of significant genes for each dataset are estimated. The flexibility in handling various distributions as parametric survival models supports the application of the algorithm to a large variety of different survival problems and represents a robust statistical framework for survival analysis in the presence of extreme observations.
Suggested Citation
Maryam Sadiq & Tahir Mehmood, 2021.
"A Flexible and Robust Approach to Analyze Survival Systems in the Presence of Extreme Observations,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, May.
Handle:
RePEc:hin:jnlmpe:9927377
DOI: 10.1155/2021/9927377
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9927377. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.