Author
Listed:
- Zhigui Ren
- Junli Wang
- Jin Chen
- Junfeng Zhang
- Jurong Liu
- Yang Liang
- Haoran Sun
Abstract
The digging resistance in a normal state is the key to excavator design and automated excavation. It is difficult to accurately predict, simulate, or directly measure the digging resistance in a normal state due to uncertainties in the soil properties and excavation parameters. In this paper, a research idea is proposed that uses the working device as the entry point to indirectly calculate the digging resistance in a normal state by measuring the motion parameters and the cylinder pressure intensity. Based on the rule of combination for spatial force systems, a method for combining and projecting the system of the digging resistance is proposed in which the system is projected as six parts, and the tangential force, normal force, and bending moment in the plane of symmetry of the working device are the objects of the solution to avoid redundant equations. Based on kinematics and dynamics models of the excavator and the force and moment equilibrium conditions of the working device, equations for the active-side calculation of the incomplete digging resistance are derived. Based on these equations, the motion parameters of the working device and data on the cylinder pressure intensity obtained by measurement are used to calculate the incomplete digging resistance. The validation scheme and process proposed use the incomplete digging resistance as the external load to obtain the simulated stress of the working device through transient analysis. The simulated stress and the measured stress corresponding to the position of the measurement point are extracted and compared. The results show that there is a difference in the size of the numerical value between the simulated and measured stress, but the variation law is highly consistent, which validates the calculation method. In this paper, an active-side calculation method is provided for the incomplete digging resistance in a normal state without considering the soil-tool interaction relationships, which lays a theoretical foundation for the study of the digging resistance characteristics in a normal state, as well as excavator design and automated excavation.
Suggested Citation
Zhigui Ren & Junli Wang & Jin Chen & Junfeng Zhang & Jurong Liu & Yang Liang & Haoran Sun, 2019.
"Active-Side Calculation Method for a Backhoe Hydraulic Excavator with Incomplete Digging Resistance in a Normal State,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-13, August.
Handle:
RePEc:hin:jnlmpe:9846305
DOI: 10.1155/2019/9846305
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9846305. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.