Author
Listed:
- R. Sajjad
- M. Mushtaq
- S. Farid
- K. Jabeen
- R. M. A. Muntazir
Abstract
This research work interprets the influences of magnetic dipole over a radiative Eyring–Powell fluid flow past a stretching sheet while considering the impacts of viscous and ohmic dissipation that produce a quite illustrious effect due to the generated magnetic dipole. This whole analysis is characterized by the effects of steady, laminar, and incompressible flow. The highly nonlinear and coupled partial differential equations (PDEs) are remodeled into a system of nonlinear ordinary differential equations (ODEs) by utilizing reliable and nondimensional parameters leading to the momentum, thermal, and concentration equations, that are computationally solved using on MATLAB, and “dsolve†command on MAPLE software, in the companionship of boundary conditions. The physical constraints such as viscous and ohmic dissipation and many other sundry parametric effects are sketched with their ultimate effects on fluid flow. For the sustenance of this research with the prior work and in collaboration with the below mentioned literature review, a comprehensive differentiation is given, which defines the sustainability of the current work. The Buongiorno nanoliquid model elaborates the thermophoresis and Brownian features that are deliberately scrutinized within the influence of activation energy. Also, the skin friction coefficient, Nusselt number, and Sherwood number are illustrated in tables. The skin friction coefficient decreases with a rise in the ferromagnetic interaction parameter as well as the Hartmann number, whereas the Nusselt number and Sherwood number show variation for varying parameters. It can be observed that Eyring–Powell fluid intensifies the rate of heat and mass transfer.
Suggested Citation
R. Sajjad & M. Mushtaq & S. Farid & K. Jabeen & R. M. A. Muntazir, 2021.
"Numerical Simulations of Magnetic Dipole over a Nonlinear Radiative Eyring–Powell Nanofluid considering Viscous and Ohmic Dissipation Effects,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, September.
Handle:
RePEc:hin:jnlmpe:9776759
DOI: 10.1155/2021/9776759
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9776759. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.