Author
Listed:
- Jing Su
- Yafei Yuan
- Chunmin Liu
- Jing Li
Abstract
Recently, there has been tremendous research studies in optical neural networks that could complete comparatively complex computation by optical characteristic with much more fewer dissipation than electrical networks. Existed neural networks based on the optical circuit are structured with an optical grating platform with different diffractive phases at different diffractive points (Chen and Zhu, 2019 and Mo et al., 2018). In this study, it proposed a multiwave deep diffractive network with approximately 10 6 synapses, and it is easy to make hardware implementation of neuromorphic networks. In the optical architecture, it can utilize optical diffractive characteristic and different wavelengths to perform different tasks. Different wavelengths and different tasks inputs are independent of each other. Moreover, we can utilize the characteristic of them to inference several tasks, simultaneously. The results of experiments were demonstrated that the network could get a comparable performance to single-wavelength single-task. Compared to the multinetwork, single network can save the cost of fabrication with lithography. We train the network on MNIST and MNIST-FASHION which are two different datasets to perform classification of 32∗32 inputs with 10 classes. Our method achieves competitive results across both of them. In particular, on the complex task MNIST_FASION, our framework obtains an excellent accuracy improvement with 3.2%. In the meanwhile, MNSIT also has the improvement with 1.15%.
Suggested Citation
Jing Su & Yafei Yuan & Chunmin Liu & Jing Li, 2020.
"Multitask Learning by Multiwave Optical Diffractive Network,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-7, July.
Handle:
RePEc:hin:jnlmpe:9748380
DOI: 10.1155/2020/9748380
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9748380. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.