IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9668018.html
   My bibliography  Save this article

A Music Genre Classification Method Based on Deep Learning

Author

Listed:
  • Qi He
  • Naeem Jan

Abstract

Digital music resources have exploded in popularity since the dawn of the digital music age. The music genre is an important classification to use when describing music. The function of music labels in discovering and separating digital music resources is crucial. In the face of a huge music database, relying on manual annotation to classify will consume a lot of cost and time, which cannot meet the needs of the times. The following are the paper’s primary research findings and innovations: to better describe the music, this article will be divided into multiple local musical instrument digital interface (MIDI) music passages, playing style close by analyzing passages, passages feature extracting, and feature sequence of passages. Extraction of note feature matrix, extraction of topic and segment division based on note feature matrix, research and extraction of effective features based on segment theme, and composition of feature sequence are all part of the process. Because of the shallow structure of standard classification methods, it is difficult for classifiers to learn temporal and semantic information about music. This research investigates recurrent neural networks (RNN) and attention using the distinctive sequence of input MIDI segments. To create data sets and conduct music categorization tests, collect 1920 MIDI files with genre labels from the Internet. The method for music classification is validated when it is combined with the experimental accuracy of equal length segment categorization.

Suggested Citation

  • Qi He & Naeem Jan, 2022. "A Music Genre Classification Method Based on Deep Learning," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-9, March.
  • Handle: RePEc:hin:jnlmpe:9668018
    DOI: 10.1155/2022/9668018
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/9668018.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/9668018.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/9668018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Huei Cheng & Che-Nan Kuo, 2022. "Machine Learning for Music Genre Classification Using Visual Mel Spectrum," Mathematics, MDPI, vol. 10(23), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9668018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.