IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9655008.html
   My bibliography  Save this article

Sparse Regularization Based on Orthogonal Tensor Dictionary Learning for Inverse Problems

Author

Listed:
  • Diriba Gemechu
  • Francisco Rossomando

Abstract

In seismic data processing, data recovery including reconstruction of the missing trace and removal of noise from the recorded data are the key steps in improving the signal-to-noise ratio (SNR). The reconstruction of seismic data and removal of noise becomes a sparse optimization problem that can be solved by using sparse regularization. Sparse regularization is a key tool in the solution of inverse problems. They are used to introduce prior knowledge and make the approximation of ill-posed inverses feasible. It deals with ill-posedness by replacing an ill-posed inverse problem with a well-posed problem that has a solution close to the true solution. In the last 2 decades, interest has shifted from linear toward nonlinear regularization methods even for linear inverse problems. In inverse problems, regularizations serve as stabilizing the solution of ill-posed inverse problems and give a solution that adequately fits measurements without producing unjustifiably complex artifacts. In this paper, we present a novel sparse regularization based on a tensor-based dictionary method for inverse problems (seismic data interpolation and denoising). This regularization avoids the vectorization step for sparse representation of seismic data during the reconstruction process. The key step in sparsifying signals is the choice of sparsity-promoting dictionary learning. The learning-based approach can adaptively sparsify datasets but has high computational complexity and involves no prior-constraint pattern information for the dataset. Many existing dictionary learning methods would be computationally infeasible for the high dimensional seismic data processing. These methods also destroy the essential information as well as it reduces the discriminability and expressibility of the signal, since they deal with vectorization. In this paper, the orthogonal tensor dictionary learning that learns a dictionary from the input data by employing orthogonality and separability is proposed as sparse regularization for the inverse problems. The performance of the proposed method was validated in seismic data interpolation and denoising individually as well as simultaneously. Numerical examples of synthetic and real seismic datasets demonstrate the validity of the proposed method. The SNR of the recovered data confirms that the proposed method is the most effective method than K-singular value decomposition and orthogonal dictionary learning methods.

Suggested Citation

  • Diriba Gemechu & Francisco Rossomando, 2024. "Sparse Regularization Based on Orthogonal Tensor Dictionary Learning for Inverse Problems," Mathematical Problems in Engineering, Hindawi, vol. 2024, pages 1-24, February.
  • Handle: RePEc:hin:jnlmpe:9655008
    DOI: 10.1155/2024/9655008
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2024/9655008.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2024/9655008.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2024/9655008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9655008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.