IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9624751.html
   My bibliography  Save this article

On Calculating the Packing Efficiency for Embedding Hexagonal and Dodecagonal Sensors in a Circular Container

Author

Listed:
  • Marina Prvan
  • Julije Ožegović
  • Arijana Burazin Mišura

Abstract

In this paper, a problem of packing hexagonal and dodecagonal sensors in a circular container is considered. We concentrate on the sensor manufacturing application, where sensors need to be produced from a circular wafer with maximal silicon efficiency (SE) and minimal number of sensor cuts. Also, a specific application is considered when produced sensors need to cover the circular area of interest with the largest packing efficiency (PE). Even though packing problems are common in many fields of research, not many authors concentrate on packing polygons of known dimensions into a circular shape to optimize a certain objective. We revisit this problem by using some well-known formulations concerning regular hexagons. We provide mathematical expressions to formulate the difference in efficiency between regular and semiregular tessellations. It is well-known that semiregular tessellation will cause larger silicon waste, but it is important to formulate the ratio between the two, as it affects the sensor production cost. The reason why we have replaced the “perfect†regular tessellation with semiregular one is the need to provide spacings at the sensor vertices for placing mechanical apertures in the design of the new CMS detector. Archimedean semiregular tessellation and its more flexible variants with irregular dodecagons can provide these triangular spacings but with larger number of sensor cuts. Hence, we construct an irregular convex hexagon that is semiregularly tessellating the targeted area. It enables the sensor to remain symmetric and hexagonal in shape, even though irregular, and produced with minimal number of cuts with respect to dodecagons. Efficiency remains satisfactory, as we show that, by producing the proposed irregular hexagon sensors from the same wafer as a regular hexagon, we can obtain almost the same SE.

Suggested Citation

  • Marina Prvan & Julije Ožegović & Arijana Burazin Mišura, 2019. "On Calculating the Packing Efficiency for Embedding Hexagonal and Dodecagonal Sensors in a Circular Container," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-16, July.
  • Handle: RePEc:hin:jnlmpe:9624751
    DOI: 10.1155/2019/9624751
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9624751.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9624751.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9624751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Igor Litvinchev & Andreas Fischer & Tetyana Romanova & Petro Stetsyuk, 2024. "A New Class of Irregular Packing Problems Reducible to Sphere Packing in Arbitrary Norms," Mathematics, MDPI, vol. 12(7), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9624751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.