Author
Listed:
- Jimin Yu
- Rumeng Zhai
- Shangbo Zhou
- LiJian Tan
Abstract
In order to improve the image quality, in this paper, we propose an improved PM model. In the proposed model, we introduce two novel diffusion coefficients and a residual error term and replace the integer differential operator with the fractional differential operator in the PM model. The diffusion coefficients can be used effectively for edge detection and noise removal. The residual error term can help to prevent image distortion. Fractional order differential operator has a good characteristic that it can enhance image texture information while removing image noise. Additionally, in the two new diffusion coefficients, a novel method is proposed for automatically setting parameter k , and it does not need to do any experiments to get the value of . For the computing fractional order diffusion coefficient, we employ the discrete Fourier transform, and an iterative scheme is carried out in the frequency domain. In the proposed model, not only is the integer differential operator replaced with the fractional differential operator, but also the order of the fractional differentiation is determined adaptively with the local variance. Comparing with some existing models, the experimental results show that the proposed algorithm can not only better suppress noise, but also better preserve edge and texture information. Moreover, the running time is greatly reduced.
Suggested Citation
Jimin Yu & Rumeng Zhai & Shangbo Zhou & LiJian Tan, 2018.
"Image Denoising Based on Adaptive Fractional Order with Improved PM Model,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-11, May.
Handle:
RePEc:hin:jnlmpe:9620754
DOI: 10.1155/2018/9620754
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9620754. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.