IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9569834.html
   My bibliography  Save this article

New Trigonometric Basis Possessing Denominator Shape Parameters

Author

Listed:
  • Kai Wang
  • Guicang Zhang

Abstract

Four new trigonometric Bernstein-like bases with two denominator shape parameters (DTB-like basis) are constructed, based on which a kind of trigonometric Bézier-like curve with two denominator shape parameters (DTB-like curves) that are analogous to the cubic Bézier curves is proposed. The corner cutting algorithm for computing the DTB-like curves is given. Any arc of an ellipse or a parabola can be exactly represented by using the DTB-like curves. A new class of trigonometric B-spline-like basis function with two local denominator shape parameters (DT B-spline-like basis) is constructed according to the proposed DTB-like basis. The totally positive property of the DT B-spline-like basis is supported. For different shape parameter values, the associated trigonometric B-spline-like curves with two denominator shape parameters (DT B-spline-like curves) can be continuous for a non-uniform knot vector. For a special value, the generated curves can be continuous for a uniform knot vector. A kind of trigonometric B-spline-like surfaces with four denominator shape parameters (DT B-spline-like surface) is shown by using the tensor product method, and the associated DT B-spline-like surfaces can be continuous for a nonuniform knot vector. When given a special value, the related surfaces can be continuous for a uniform knot vector. A new class of trigonometric Bernstein–Bézier-like basis function with three denominator shape parameters (DT BB-like basis) over a triangular domain is also constructed. A de Casteljau-type algorithm is developed for computing the associated trigonometric Bernstein–Bézier-like patch with three denominator shape parameters (DT BB-like patch). The condition for continuous jointing two DT BB-like patches over the triangular domain is deduced.

Suggested Citation

  • Kai Wang & Guicang Zhang, 2018. "New Trigonometric Basis Possessing Denominator Shape Parameters," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-25, October.
  • Handle: RePEc:hin:jnlmpe:9569834
    DOI: 10.1155/2018/9569834
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/9569834.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/9569834.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9569834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunyi Fu & Yuanpeng Zhu, 2021. "A Generalized Quasi Cubic Trigonometric Bernstein Basis Functions and Its B-Spline Form," Mathematics, MDPI, vol. 9(10), pages 1-25, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9569834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.