Author
Listed:
- JianGuo Wang
- Joshua Zhexue Huang
- Dingming Wu
Abstract
Query recommendation is an essential part of modern search engine which aims at helping users find useful information. Existing query recommendation methods all focus on recommending similar queries to the users. However, the main problem of these similarity-based approaches is that even some very similar queries may return few or even no useful search results, while other less similar queries may return more useful search results, especially when the initial query does not reflect user’s search intent correctly. Therefore, we propose recommending high utility queries, that is, useful queries with more relevant documents, rather than similar ones. In this paper, we first construct a query-reformulation graph that consists of query nodes, satisfactory document nodes, and interruption node. Then, we apply an absorbing random walk on the query-reformulation graph and model the document utility with the transition probability from initial query to the satisfactory document. At last, we propagate the document utilities back to queries and rank candidate queries with their utilities for recommendation. Extensive experiments were conducted on real query logs, and the experimental results have shown that our method significantly outperformed the state-of-the-art methods in recommending high utility queries.
Suggested Citation
JianGuo Wang & Joshua Zhexue Huang & Dingming Wu, 2015.
"Recommending High Utility Queries via Query-Reformulation Graph,"
Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, May.
Handle:
RePEc:hin:jnlmpe:956468
DOI: 10.1155/2015/956468
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:956468. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.