Author
Listed:
- Mustafa Kamal
- Shahnawaz Khan
- Ahmadur Rahman
- R. A. Aldallal
- M. M. Abd El-Raouf
- Abdisalam Hassan Muse
- Abdalla Rabie
- Dost Muhammad Khan
Abstract
Numerous studies have already been attempted to explore the reliability of systems considering mask data, though the mass of them has largely focused on basic series or parallel systems, where component failures are assumed to follow an exponential or Weibull distribution. However, most electrotonic products and systems are made up of numerous components integrated in parallel-series, series-parallel, and other bridge hybrid structures, and the number of studies in the area of accelerated life testing (ALT) employing masked data for hybrid systems is limited. In this paper, the constant-stress ALT (CSALT) is explored based on type-II progressive censoring scheme (TIIPCS) for a four-component hybrid system using geometric process (GmP). The failure times of the components of the system are assumed to follow the generalized Pareto (GP) distribution. The maximum likelihood estimate (MLE) technique is used to establish statistical inference for the model's unknown parameters under the premise that the failure reasons are unknown for the hybrid system. In addition, the asymptotic confidence intervals (ACIs) are also obtained by inverting the fisher information matrix. Finally, a simulation study is given to explain the proposed techniques and to evaluate the performance of the estimates. The performance of MLEs is assessed in terms of root mean square errors (RMSEs) and relative absolute biases (RABs), whereas the performance of ACIs is assessed in terms of their interval length (IL) and coverage probabilities (CPs). The findings show that the technique can deliver good estimation performance with small and intermediate sample sizes, and the estimates are more accurate when more failures are observed, showing the estimation method's efficiency.
Suggested Citation
Mustafa Kamal & Shahnawaz Khan & Ahmadur Rahman & R. A. Aldallal & M. M. Abd El-Raouf & Abdisalam Hassan Muse & Abdalla Rabie & Dost Muhammad Khan, 2022.
"Reliability Analysis of Hybrid System Using Geometric Process in Multiple Level of Constant Stress Accelerated Life Test through Simulation Study for Type-II Progressive Censored Masked Data,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-9, May.
Handle:
RePEc:hin:jnlmpe:9528479
DOI: 10.1155/2022/9528479
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9528479. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.