IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/952069.html
   My bibliography  Save this article

Maintaining Connectivity of MANETs through Multiple Unmanned Aerial Vehicles

Author

Listed:
  • Ming Zhu
  • Fei Liu
  • Zhiping Cai
  • Ming Xu

Abstract

Recently, Unmanned Aerial Vehicles (UAVs) have emerged as relay platforms to maintain the connectivity of ground mobile ad hoc networks (MANETs). However, when deploying UAVs, existing methods have not consider one situation that there are already some UAVs deployed in the field. In this paper, we study a problem jointing the motion control of existing UAVs and the deployment of new UAVs so that the number of new deployed UAVs to maintain the connectivity of ground MANETs can be minimized. We firstly formulate the problem as a Minimum Steiner Tree problem with Existing Mobile Steiner points under Edge Length Bound constraints (MST-EMSELB) and prove the NP completeness of this problem. Then we propose three Existing UAVs Aware (EUA) approximate algorithms for the MST-EMSELB problem: Deploy-Before-Movement (DBM), Move-Before-Deployment (MBD), and Deploy-Across-Movement (DAM) algorithms. Both DBM and MBD algorithm decouple the joint problem and solve the deployment and movement problem one after another, while DAM algorithm optimizes the deployment and motion control problem crosswise and solves these two problems simultaneously. Simulation results demonstrate that all EUA algorithms have better performance than non-EUA algorithm. The DAM algorithm has better performance in all scenarios than MBD and DBM ones. Compared with DBM algorithm, the DAM algorithm can reduce at most 70% of the new UAVs number.

Suggested Citation

  • Ming Zhu & Fei Liu & Zhiping Cai & Ming Xu, 2015. "Maintaining Connectivity of MANETs through Multiple Unmanned Aerial Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, November.
  • Handle: RePEc:hin:jnlmpe:952069
    DOI: 10.1155/2015/952069
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/952069.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/952069.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/952069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:952069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.