Author
Listed:
- Avinash Kumar
- Tushar Jain
Abstract
This paper revisits the problem of synthesizing the optimal control law for linear systems with a quadratic cost. For this problem, traditionally, the state feedback gain matrix of the optimal controller is computed by solving the Riccati equation, which is primarily obtained using calculus of variations- (CoV-) based and Hamilton–Jacobi–Bellman (HJB) equation-based approaches. To obtain the Riccati equation, these approaches require some assumptions in the solution procedure; that is, the former approach requires the notion of costates and then their relationship with states is exploited to obtain the closed-form expression of the optimal control law, while the latter requires a priori knowledge regarding the optimal cost function. In this paper, we propose a novel method for computing linear quadratic optimal control laws by using the global optimal control framework introduced by V. F. Krotov. As shall be illustrated in this article, this framework does not require the notion of costates and any a priori information regarding the optimal cost function. Nevertheless, using this framework, the optimal control problem gets translated to a nonconvex optimization problem. The novelty of the proposed method lies in transforming this nonconvex optimization problem into a convex problem. The convexity imposition results in a linear matrix inequality (LMI), whose analysis is reported in this work. Furthermore, this LMI reduces to the Riccati equation upon imposing optimality requirements. The insights along with the future directions of the work are presented and gathered at appropriate locations in this article. Finally, numerical results are provided to demonstrate the proposed methodology.
Suggested Citation
Avinash Kumar & Tushar Jain, 2019.
"Linear Quadratic Optimal Control Design: A Novel Approach Based on Krotov Conditions,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-17, October.
Handle:
RePEc:hin:jnlmpe:9490512
DOI: 10.1155/2019/9490512
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9490512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.