IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/940757.html
   My bibliography  Save this article

Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimization Algorithm

Author

Listed:
  • Yulong Ying
  • Yunpeng Cao
  • Shuying Li
  • Jingchao Li

Abstract

In the lifespan of a gas turbine engine, abrupt faults and performance degradation of its gas-path components may happen; however the performance degradation is not easily foreseeable when the level of degradation is small. Gas path analysis (GPA) method has been widely applied to monitor gas turbine engine health status as it can easily obtain the magnitudes of the detected component faults. However, when the number of components within engine is large or/and the measurement noise level is high, the smearing effect may be strong and the degraded components may not be recognized. In order to improve diagnostic effect, a nonlinear steady-state model based gas turbine health status estimation approach with improved particle swarm optimization algorithm (PSO-GPA) has been proposed in this study. The proposed approach has been tested in ten test cases where the degradation of a model three-shaft marine engine has been analyzed. These case studies have shown that the approach can accurately search and isolate the degraded components and further quantify the degradation for major gas-path components. Compared with the typical GPA method, the approach has shown better measurement noise immunity and diagnostic accuracy.

Suggested Citation

  • Yulong Ying & Yunpeng Cao & Shuying Li & Jingchao Li, 2015. "Nonlinear Steady-State Model Based Gas Turbine Health Status Estimation Approach with Improved Particle Swarm Optimization Algorithm," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, June.
  • Handle: RePEc:hin:jnlmpe:940757
    DOI: 10.1155/2015/940757
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/940757.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/940757.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/940757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiang Zhou & Sangwei Lu & Wenjie Kai & Jichang Wu & Chenyang Zhang & Feng Lu, 2023. "A Novel Adaptive Generation Method for Initial Guess Values of Component-Level Aero-Engine Start-Up Models," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
    2. Binbin Yan & Minghui Hu & Kun Feng & Zhinong Jiang, 2021. "Enhanced Component Analytical Solution for Performance Adaptation and Diagnostics of Gas Turbines," Energies, MDPI, vol. 14(14), pages 1-20, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:940757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.