IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9381728.html
   My bibliography  Save this article

An Enhanced Adaptive Random Testing by Dividing Dimensions Independently

Author

Listed:
  • Zhibo Li
  • Qingbao Li
  • Lei Yu

Abstract

Random testing (RT) is widely applied in the area of software testing due to its advantages such as simplicity, unbiasedness, and easy implementation. Adaptive random testing (ART) enhances RT. It improves the effectiveness of RT by distributing test cases as evenly as possible. Fixed Size Candidate Set (FSCS) is one of the most well-known ART algorithms. Its high failure-detection effectiveness only shows at low failure rates in low-dimensional spaces. In order to solve this problem, the boundary effect of the test case distribution is analyzed, and the FSCS algorithm of a limited candidate set (LCS-FSCS) is proposed. By utilizing the information gathered from success test cases (no failure-causing test inputs), a tabu generation domain of candidate test case is produced. This tabu generation domain is eliminated from the current candidate test case generation domain. Finally, the number of test cases at the boundary is reduced by constraining the candidate test case generation domain. The boundary effect is effectively relieved, and the distribution of test cases is more even. The results of the simulation experiment show that the failure-detection effectiveness of LCS-FSCS is significantly improved in high-dimensional spaces. Meanwhile, the failure-detection effectiveness is also improved for high failure rates and the gap of failure-detection effectiveness between different failure rates is narrowed. The results of an experiment conducted on some real-life programs show that LCS-FSCS is less effective than FSCS only when the failure distribution is concentrated on the boundary. In general, the effectiveness of LCS-FSCS is higher than that of FSCS.

Suggested Citation

  • Zhibo Li & Qingbao Li & Lei Yu, 2019. "An Enhanced Adaptive Random Testing by Dividing Dimensions Independently," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, October.
  • Handle: RePEc:hin:jnlmpe:9381728
    DOI: 10.1155/2019/9381728
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9381728.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9381728.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9381728?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9381728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.