IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9365340.html
   My bibliography  Save this article

Deep Learning Based Abstractive Text Summarization: Approaches, Datasets, Evaluation Measures, and Challenges

Author

Listed:
  • Dima Suleiman
  • Arafat Awajan

Abstract

In recent years, the volume of textual data has rapidly increased, which has generated a valuable resource for extracting and analysing information. To retrieve useful knowledge within a reasonable time period, this information must be summarised. This paper reviews recent approaches for abstractive text summarisation using deep learning models. In addition, existing datasets for training and validating these approaches are reviewed, and their features and limitations are presented. The Gigaword dataset is commonly employed for single-sentence summary approaches, while the Cable News Network (CNN)/Daily Mail dataset is commonly employed for multisentence summary approaches. Furthermore, the measures that are utilised to evaluate the quality of summarisation are investigated, and Recall-Oriented Understudy for Gisting Evaluation 1 (ROUGE1), ROUGE2, and ROUGE-L are determined to be the most commonly applied metrics. The challenges that are encountered during the summarisation process and the solutions proposed in each approach are analysed. The analysis of the several approaches shows that recurrent neural networks with an attention mechanism and long short-term memory (LSTM) are the most prevalent techniques for abstractive text summarisation. The experimental results show that text summarisation with a pretrained encoder model achieved the highest values for ROUGE1, ROUGE2, and ROUGE-L (43.85, 20.34, and 39.9, respectively). Furthermore, it was determined that most abstractive text summarisation models faced challenges such as the unavailability of a golden token at testing time, out-of-vocabulary (OOV) words, summary sentence repetition, inaccurate sentences, and fake facts.

Suggested Citation

  • Dima Suleiman & Arafat Awajan, 2020. "Deep Learning Based Abstractive Text Summarization: Approaches, Datasets, Evaluation Measures, and Challenges," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-29, August.
  • Handle: RePEc:hin:jnlmpe:9365340
    DOI: 10.1155/2020/9365340
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9365340.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9365340.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9365340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9365340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.