IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9304705.html
   My bibliography  Save this article

Shaking Table Tests on a New Antislide Pile under Earthquakes

Author

Listed:
  • Jie Lai
  • Yun Liu
  • Wei Wang

Abstract

A retaining form of a shock-absorbing antislide pile is proposed for slope engineering. A flexible material (shock-absorption layer) is filled in front of an ordinary antislide pile, which is used to absorb a large amount of seismic energy, thereby decreasing the transmission of seismic energy to the antislide pile. The flexible material thus reduces the seismic response, hence improving the aseismic capacity of the antislide pile. To verify the seismic performance of the shock-absorbing antislide pile, a shaking table contrast test was conducted and the results were compared with those from an ordinary antislide pile. The test results show that the flexible material absorbs a portion of the seismic deformation of the slip mass, decreasing the final displacement of the shock-absorbing antislide pile compared to that of the ordinary antislide pile, thereby reducing the sensitivity of the pile body to the displacement. Under the same conditions, the acceleration response of the slope body at the same height is lower for the shock-absorbing antislide pile than that for the ordinary pile, with the seismic performance of the former being superior to that of the latter. Furthermore, the shock-absorbing antislide pile is similar to the ordinary pile in terms of the dynamic earth pressure distribution form of the pile shaft; however, its value is relatively smaller, and the former exhibits better dynamic stress performance than the latter. The test results should prove useful for aseismic design of slopes.

Suggested Citation

  • Jie Lai & Yun Liu & Wei Wang, 2021. "Shaking Table Tests on a New Antislide Pile under Earthquakes," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, January.
  • Handle: RePEc:hin:jnlmpe:9304705
    DOI: 10.1155/2021/9304705
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9304705.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9304705.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9304705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9304705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.