IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9287097.html
   My bibliography  Save this article

A Compound Structure for Wind Speed Forecasting Using MKLSSVM with Feature Selection and Parameter Optimization

Author

Listed:
  • Sizhou Sun
  • Jingqi Fu
  • Feng Zhu
  • Nan Xiong

Abstract

The aims of this study contribute to a new hybrid model by combining ensemble empirical mode decomposition (EEMD) with multikernel function least square support vector machine (MKLSSVM) optimized by hybrid gravitation search algorithm (HGSA) for short-term wind speed prediction. In the forecasting process, EEMD is adopted to make the original wind speed data decomposed into intrinsic mode functions (IMFs) and one residual firstly. Then, partial autocorrelation function (PACF) is applied to identify the correlation between the corresponding decomposed components. Subsequently, the MKLSSVM using multikernel function of radial basis function (RBF) and polynomial (Poly) kernel function by weight coefficient is exploited as core forecasting engine to make the short-term wind speed prediction. To improve the regression performance, the binary-value GSA (BGSA) in HGSA is utilized as feature selection approach to remove the ineffective candidates and reconstruct the most relevant feature input-matrix for the forecasting engine, while real-value GSA (RGSA) makes the parameter combination optimization of MKLSSVM model. In the end, these respective decomposed subseries forecasting results are combined into the final forecasting values by aggregate calculation. Numerical results and comparable analysis illustrate the excellent performance of the EEMD-HGSA-MKLSSVM model when applied in the short-term wind speed forecasting.

Suggested Citation

  • Sizhou Sun & Jingqi Fu & Feng Zhu & Nan Xiong, 2018. "A Compound Structure for Wind Speed Forecasting Using MKLSSVM with Feature Selection and Parameter Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-21, November.
  • Handle: RePEc:hin:jnlmpe:9287097
    DOI: 10.1155/2018/9287097
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/9287097.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/9287097.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9287097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nathan Oaks Farrar & Mohd Hasan Ali & Dipankar Dasgupta, 2023. "Artificial Intelligence and Machine Learning in Grid Connected Wind Turbine Control Systems: A Comprehensive Review," Energies, MDPI, vol. 16(3), pages 1-25, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9287097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.