IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9256312.html
   My bibliography  Save this article

Centralized Maintenance Time Prediction Algorithm for Freight Train Wheels Based on Remaining Useful Life Prediction

Author

Listed:
  • Hongmei Shi
  • Jinsong Yang
  • Jin Si

Abstract

Many freight trains for special lines have in common the characteristics of a fixed group. Centralized Condition-Based Maintenance (CCBM) of key components, on the same freight train, can reduce maintenance costs and enhance transportation efficiency. To this end, an optimization algorithm based on the nonlinear Wiener process is proposed, for the prediction of the train wheels Remaining Useful Life (RUL) and the centralized maintenance timing. First, Hodrick–Prescott (HP) filtering algorithm is employed to process the raw monitoring data of wheel tread wear, extracting its trend components. Then, a nonlinear Wiener process model is constructed. Model parameters are calculated with a maximum likelihood estimation and the general deterioration parameters of wheel tread wear are obtained. Then, the updating algorithm for the drift coefficient is deduced using Bayesian formula. The online updating of the model is realized, based on individual wheel monitoring data, while a probability density function of individual wheel RUL is obtained. A prediction method of RUL for centralized maintenance is proposed, based on two set thresholds: “maintenance limit” and “the ratio of limit-arriving.” Meanwhile, a CCBM timing prediction algorithm is proposed, based on the expectation distribution of individual wheel RUL. Finally, the model is validated using a 500-day online monitoring data on a fixed group, consisting of 54 freight train cars. The validation result shows that the model can predict the wheels RUL of the train for CCBM. The proposed method can be used to predict the maintenance timing when there is a large number of components under the same working conditions and following the same path of degradation.

Suggested Citation

  • Hongmei Shi & Jinsong Yang & Jin Si, 2020. "Centralized Maintenance Time Prediction Algorithm for Freight Train Wheels Based on Remaining Useful Life Prediction," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, March.
  • Handle: RePEc:hin:jnlmpe:9256312
    DOI: 10.1155/2020/9256312
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9256312.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9256312.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9256312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9256312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.