Author
Listed:
- Hongmei Shi
- Jinsong Yang
- Jin Si
Abstract
Many freight trains for special lines have in common the characteristics of a fixed group. Centralized Condition-Based Maintenance (CCBM) of key components, on the same freight train, can reduce maintenance costs and enhance transportation efficiency. To this end, an optimization algorithm based on the nonlinear Wiener process is proposed, for the prediction of the train wheels Remaining Useful Life (RUL) and the centralized maintenance timing. First, Hodrick–Prescott (HP) filtering algorithm is employed to process the raw monitoring data of wheel tread wear, extracting its trend components. Then, a nonlinear Wiener process model is constructed. Model parameters are calculated with a maximum likelihood estimation and the general deterioration parameters of wheel tread wear are obtained. Then, the updating algorithm for the drift coefficient is deduced using Bayesian formula. The online updating of the model is realized, based on individual wheel monitoring data, while a probability density function of individual wheel RUL is obtained. A prediction method of RUL for centralized maintenance is proposed, based on two set thresholds: “maintenance limit” and “the ratio of limit-arriving.” Meanwhile, a CCBM timing prediction algorithm is proposed, based on the expectation distribution of individual wheel RUL. Finally, the model is validated using a 500-day online monitoring data on a fixed group, consisting of 54 freight train cars. The validation result shows that the model can predict the wheels RUL of the train for CCBM. The proposed method can be used to predict the maintenance timing when there is a large number of components under the same working conditions and following the same path of degradation.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9256312. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.