IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/924652.html
   My bibliography  Save this article

The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms

Author

Listed:
  • Hui Lu
  • Xiaoteng Wang
  • Zongming Fei
  • Meikang Qiu

Abstract

Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up the convergence. However, different chaotic maps in different phases have different effects on EAs. This paper focuses on exploring the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs) by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy, is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is, initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling transformation of chaotic sequences is proved by measuring the largest Lyapunov exponent. The convergence metric γ and diversity metric Δ are chosen to evaluate the performance of new algorithms with chaos. The results of experiments demonstrate that chaotic maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition, cat map has the best performance in solving problems with local optima.

Suggested Citation

  • Hui Lu & Xiaoteng Wang & Zongming Fei & Meikang Qiu, 2014. "The Effects of Using Chaotic Map on Improving the Performance of Multiobjective Evolutionary Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-16, February.
  • Handle: RePEc:hin:jnlmpe:924652
    DOI: 10.1155/2014/924652
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/924652.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/924652.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/924652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Giovanni Giachetti & Álex Paz & Alvaro Peña Fritz, 2024. "Chaotic Binarization Schemes for Solving Combinatorial Optimization Problems Using Continuous Metaheuristics," Mathematics, MDPI, vol. 12(2), pages 1-39, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:924652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.