IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9240317.html
   My bibliography  Save this article

Multiperiod-Ahead Wind Speed Forecasting Using Deep Neural Architecture and Ensemble Learning

Author

Listed:
  • Lei Chen
  • Zhijun Li
  • Yi Zhang

Abstract

Accurate forecasting of wind speed plays a fundamental role in enabling reliable operation and planning for large-scale integration of wind turbines. It is difficult to obtain the accurate wind speed forecasting (WSF) due to the intermittent and random nature of wind energy. In this paper, a multiperiod-ahead WSF model based on the analysis of variance, stacked denoising autoencoder (SDAE), and ensemble learning is proposed. The analysis of variance classifies the training samples into different categories. The stacked denoising autoencoder as a deep learning architecture is later built for unsupervised feature learning in each category. The ensemble of extreme learning machine (ELM) is applied to fine-tune the SDAE for multiperiod-ahead wind speed forecasting. Experimental results are made to demonstrate that the proposed model has the best performance compared with the classic WSF methods including the single SDAE-ELM, ELMAN, and adaptive neuron-fuzzy inference system (ANFIS).

Suggested Citation

  • Lei Chen & Zhijun Li & Yi Zhang, 2019. "Multiperiod-Ahead Wind Speed Forecasting Using Deep Neural Architecture and Ensemble Learning," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-14, June.
  • Handle: RePEc:hin:jnlmpe:9240317
    DOI: 10.1155/2019/9240317
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9240317.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/9240317.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9240317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9240317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.