IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/917139.html
   My bibliography  Save this article

Automated Flare Prediction Using Extreme Learning Machine

Author

Listed:
  • Yuqing Bian
  • Jianwei Yang
  • Ming Li
  • Rushi Lan

Abstract

Extreme learning machine (ELM) is a fast learning algorithm of single-hidden layer feedforward neural networks (SLFNs). Compared with the traditional neural networks, the ELM algorithm has the advantages of fast learning speed and good generalization. At the same time, an ordinal logistic regression (LR) is a statistical method which is conceptually simple and algorithmically fast. In this paper, in order to improve the real-time performance, a flare forecasting method is introduced which is the combination of the LR model and the ELM algorithm. The predictive variables are three photospheric magnetic parameters, that is, the total unsigned magnetic flux, length of the strong-gradient magnetic polarity inversion line, and total magnetic energy dissipation. The LR model is used to map these three magnetic parameters of each active region into four probabilities. Consequently, the ELM is used to map the four probabilities into a binary label which is the final output. The proposed model is used to predict the occurrence of flares with a certain level over 24 hours following the time when the magnetogram is recorded. The experimental results show that the cascade algorithm not only improves learning speed to realize timely prediction but also has higher accuracy of X-class flare prediction in comparison with other methods.

Suggested Citation

  • Yuqing Bian & Jianwei Yang & Ming Li & Rushi Lan, 2013. "Automated Flare Prediction Using Extreme Learning Machine," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-7, December.
  • Handle: RePEc:hin:jnlmpe:917139
    DOI: 10.1155/2013/917139
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/917139.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/917139.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/917139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:917139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.