IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9163081.html
   My bibliography  Save this article

Dusty Nanofluid Past a Centrifugally Stretching Surface

Author

Listed:
  • Wubshet Ibrahim
  • Dachasa Gamachu

Abstract

This communication reports, the flow of Cu-water dusty nanofluid past a centrifugally stretching surface under the effect of second order slip and convective boundary conditions. The coupled nonlinear ordinary differential equations are get hold of from the partial differential equations which are derived from the conservation of momentum and energy of both nanofluid and dusty phases. Then, using apt resemblance transformation these ordinary differential equations were altered into a dimensionless form and then solved by bvp5c solver in Matlab software. The variation in velocity and temperature profiles of fluid and dusty phases for different parameters are thrash out in depth by figures and tables. The outcomes exhibit that the velocity profile of both fluid and dusty phases boot as the values of the dust particle volume fraction parameter is enlarged. Besides, the magnetic field parameter has similar effect on the velocity profile of both fluid and dusty phases. Also, the results illustrated that temperature profile of both Cu-water nanofluid and dusty particle phases are improved within an enhancement in the values of the temperature relaxation parameter, Cu-particle volume fraction, and Biot number. The results also confirm that for greater values of the magnetic field parameter the values of skin friction coefficient are enlarged for all values of the velocity ratio parameter.

Suggested Citation

  • Wubshet Ibrahim & Dachasa Gamachu, 2020. "Dusty Nanofluid Past a Centrifugally Stretching Surface," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, February.
  • Handle: RePEc:hin:jnlmpe:9163081
    DOI: 10.1155/2020/9163081
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9163081.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9163081.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9163081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Syazana Anuar & Norfifah Bachok & Ioan Pop, 2021. "Numerical Computation of Dusty Hybrid Nanofluid Flow and Heat Transfer over a Deformable Sheet with Slip Effect," Mathematics, MDPI, vol. 9(6), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9163081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.