IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9159158.html
   My bibliography  Save this article

Automated Classification of Atrial Fibrillation Using Artificial Neural Network for Wearable Devices

Author

Listed:
  • Fengying Ma
  • Jingyao Zhang
  • Wei Liang
  • Jingyu Xue

Abstract

Atrial fibrillation (AF), as one of the most common arrhythmia diseases in clinic, is a malignant threat to human health. However, AF is difficult to monitor in real time due to its intermittent nature. Wearable electrocardiogram (ECG) monitoring equipment has flourished in the context of telemedicine due to its real-time monitoring and simple operation in recent years, providing new ideas and methods for the detection of AF. In this paper, we propose a low computational cost classification model for robust detection of AF episodes in ECG signals, using RR intervals of the ECG signals and feeding them into artificial neural network (ANN) for classification, to compensate the defect of the computational complexity in traditional wearable ECG monitoring devices. In addition, we compared our proposed classifier with other popular classifiers. The model was trained and tested on the AF Termination Challenge Database and MIT-BIH Arrhythmia Database. Experimental results achieve the highest sensitivity of 99.3%, specificity of 97.4%, and accuracy of 98.3%, outperforming most of the others in the recent literature. Accordingly, we observe that ANN using RR intervals as an input feature can be a suitable candidate for automatic classification of AF.

Suggested Citation

  • Fengying Ma & Jingyao Zhang & Wei Liang & Jingyu Xue, 2020. "Automated Classification of Atrial Fibrillation Using Artificial Neural Network for Wearable Devices," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-6, April.
  • Handle: RePEc:hin:jnlmpe:9159158
    DOI: 10.1155/2020/9159158
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9159158.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/9159158.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9159158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khondker Mohammad Zobair & Louis Sanzogni & Luke Houghton & Md Zahidul Islam, 2021. "Forecasting care seekers satisfaction with telemedicine using machine learning and structural equation modeling," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-31, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9159158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.