IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/915053.html
   My bibliography  Save this article

Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast

Author

Listed:
  • Junfei Chen
  • Ming Li
  • Weiguang Wang

Abstract

Drought is part of natural climate variability and ranks the first natural disaster in the world. Drought forecasting plays an important role in mitigating impacts on agriculture and water resources. In this study, a drought forecast model based on the random forest method is proposed to predict the time series of monthly standardized precipitation index (SPI). We demonstrate model application by four stations in the Haihe river basin, China. The random-forest- (RF-) based forecast model has consistently shown better predictive skills than the ARIMA model for both long and short drought forecasting. The confidence intervals derived from the proposed model generally have good coverage, but still tend to be conservative to predict some extreme drought events.

Suggested Citation

  • Junfei Chen & Ming Li & Weiguang Wang, 2012. "Statistical Uncertainty Estimation Using Random Forests and Its Application to Drought Forecast," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-12, September.
  • Handle: RePEc:hin:jnlmpe:915053
    DOI: 10.1155/2012/915053
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2012/915053.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2012/915053.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/915053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Mallidis & Volha Yakavenka & Anastasios Konstantinidis & Nikolaos Sariannidis, 2021. "A Goal Programming-Based Methodology for Machine Learning Model Selection Decisions: A Predictive Maintenance Application," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    2. Seyed Mohammad Ehsan Azimi & Seyed Javad Sadatinejad & Arash Malekian & Mohammad Hossein Jahangir, 2023. "Application of artificial intelligence hybrid models for meteorological drought prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2565-2589, March.
    3. Neeta Nandgude & T. P. Singh & Sachin Nandgude & Mukesh Tiwari, 2023. "Drought Prediction: A Comprehensive Review of Different Drought Prediction Models and Adopted Technologies," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
    4. Okan Mert Katipoğlu, 2023. "Prediction of Streamflow Drought Index for Short-Term Hydrological Drought in the Semi-Arid Yesilirmak Basin Using Wavelet Transform and Artificial Intelligence Techniques," Sustainability, MDPI, vol. 15(2), pages 1-24, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:915053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.