Author
Listed:
- Ruixin Ma
- Yong Yin
- Zilong Li
- Jing Chen
- Kexin Bao
Abstract
In this paper, we focus on the safety supervision of inland vessels. This paper especially aims at studying the vessel target detection and dynamic tracking algorithm based on computer vision and the target fusion algorithm based on multisensor. For the vessel video target detection and tracking, this paper analyzes the current widely used methods and theories. Additionally, facing the application scenarios and characteristics of inland vessels, a comprehensive vessel video target detection algorithm is proposed in this paper. It is combined with a three-frame difference method based on Canny edge detection and a background subtraction method based on mixed Gaussian background modeling. Besides, for the multisensor target fusion, the processing method of laser point cloud data and automatic identification system (AIS) data is analyzed in this paper. Based on the idea of fuzzy mathematics, this paper proposes a method for calculating the fuzzy correlation matrix with normal membership function, which realizes the fusion of vessel track features of laser point cloud data and AIS data under dynamic video correction. Finally, through this method, a set of vessel situation active intelligent perception systems based on multisensor fusion was developed. Experiments show that this method has better environmental applicability and detection accuracy than traditional manual detection and any single monitoring method.
Suggested Citation
Ruixin Ma & Yong Yin & Zilong Li & Jing Chen & Kexin Bao, 2020.
"Research on Active Intelligent Perception Technology of Vessel Situation Based on Multisensor Fusion,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, August.
Handle:
RePEc:hin:jnlmpe:9146727
DOI: 10.1155/2020/9146727
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9146727. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.