IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/909410.html
   My bibliography  Save this article

Mathematical Extrapolating of Highly Efficient Fin Systems

Author

Listed:
  • A.-R. A. Khaled

Abstract

Different high-performance fins are mathematically analyzed in this work. Initially, three types are considered: (i) exponential, (ii) parabolic, and (iii) triangular fins. Analytical solutions are obtained. Accordingly, the effective thermal efficiency and the effective volumetric heat dissipation rate are calculated. The analytical results were validated against numerical solutions. It is found that the triangular fin has the maximum effective thermal length. In addition, the exponential pin fin is found to have the largest effective thermal efficiency. However, the effective efficiency for the straight one is the maximum when its effective thermal length based on profile area is greater than 1.4. Furthermore, the exponential straight fin is found to have effective volumetric heat dissipation that can be 440% and 580% above the parabolic and triangular straight fins, respectively. In contrast, the exponential pin fin is found to possess effective volumetric heat dissipation that can be 120% and 132% above the parabolic and triangular pin fins, respectively. Finally, new high performance fins are mathematically generated that can have effective volumetric heat dissipation of 24% and 12% above those of exponential pin and straight fins, respectively.

Suggested Citation

  • A.-R. A. Khaled, 2011. "Mathematical Extrapolating of Highly Efficient Fin Systems," Mathematical Problems in Engineering, Hindawi, vol. 2011, pages 1-18, September.
  • Handle: RePEc:hin:jnlmpe:909410
    DOI: 10.1155/2011/909410
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2011/909410.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2011/909410.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2011/909410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:909410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.