IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/903951.html
   My bibliography  Save this article

Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle

Author

Listed:
  • Yibing Zhao
  • Jining Li
  • Linhui Li
  • Mingheng Zhang
  • Lie Guo

Abstract

Unmanned Ground Vehicles (UGVs) that can drive autonomously in cross-country environment have received a good deal of attention in recent years. They must have the ability to determine whether the current terrain is traversable or not by using onboard sensors. This paper explores new methods related to environment perception based on computer image processing, pattern recognition, multisensors data fusion, and multidisciplinary theory. Kalman filter is used for low-level fusion of physical level, thus using the D-S evidence theory for high-level data fusion. Probability Test and Gaussian Mixture Model are proposed to obtain the traversable region in the forward-facing camera view for UGV. One feature set including color and texture information is extracted from areas of interest and combined with a classifier approach to resolve two types of terrain (traversable or not). Also, three-dimension data are employed; the feature set contains components such as distance contrast of three-dimension data, edge chain-code curvature of camera image, and covariance matrix based on the principal component method. This paper puts forward one new method that is suitable for distributing basic probability assignment (BPA), based on which D-S theory of evidence is employed to integrate sensors information and recognize the obstacle. The subordination obtained by using the fuzzy interpolation is applied to calculate the basic probability assignment. It is supposed that the subordination is equal to correlation coefficient in the formula. More accurate results of object identification are achieved by using the D-S theory of evidence. Control on motion behavior or autonomous navigation for UGV is based on the method, which is necessary for UGV high speed driving in cross-country environment. The experiment results have demonstrated the viability of the new method.

Suggested Citation

  • Yibing Zhao & Jining Li & Linhui Li & Mingheng Zhang & Lie Guo, 2013. "Environmental Perception and Sensor Data Fusion for Unmanned Ground Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-12, November.
  • Handle: RePEc:hin:jnlmpe:903951
    DOI: 10.1155/2013/903951
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/903951.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/903951.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/903951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:903951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.