IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8914501.html
   My bibliography  Save this article

Short-Term Air Quality Prediction Based on Fractional Grey Linear Regression and Support Vector Machine

Author

Listed:
  • Meng Dun
  • Zhicun Xu
  • Yan Chen
  • Lifeng Wu

Abstract

To predict the daily air pollutants, the fractional multivariable model is established. The hybrid model of the grey multivariable regression model with fractional order accumulation model (FGM(0, m)) and support vector regression model (SVR) is used to predict the air pollutants (PM 10 , PM 2.5 , and NO 2 ) from December 31, 2018, to January 3, 2019, in Shijiazhuang and Chongqing. The absolute percentage errors (APEs) are used to determine the weights of the FGM(0, m) and SVR. Meanwhile, the Holt–Winters model is used to predict the air quality pollutants for the same location and period. When the mean absolute percent error (MAPE) is 0%–20%, it indicates that the model has good accuracy of fitting and prediction. The MAPE of the hybrid model is less than 20%. It is shown that except for the PM 2.5 concentration prediction in Shijiazhuang (13.7%), the MAPE between the forecasting and actual values of the three air pollutants in Shijiazhuang and Chongqing was less than 10%.

Suggested Citation

  • Meng Dun & Zhicun Xu & Yan Chen & Lifeng Wu, 2020. "Short-Term Air Quality Prediction Based on Fractional Grey Linear Regression and Support Vector Machine," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, May.
  • Handle: RePEc:hin:jnlmpe:8914501
    DOI: 10.1155/2020/8914501
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8914501.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8914501.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8914501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Huang & Junhao Yu & Xiaohong Dai & Zheng Huang & Yuanyuan Li, 2022. "Air-Quality Prediction Based on the EMD–IPSO–LSTM Combination Model," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    2. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8914501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.