IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8897111.html
   My bibliography  Save this article

Analytical Investigation of Magnetic Field on Unsteady Boundary Layer Stagnation Point Flow of Water-Based Graphene Oxide-Water and Graphene Oxide-Ethylene Glycol Nanofluid over a Stretching Surface

Author

Listed:
  • Ali Rehman
  • Zabidin Salleh

Abstract

This study explains the effect of magnetic field of the stagnation point flow of a water-based nanofluid graphene oxide-water (GO-W) and graphene oxide-ethylene glycol (GO-EG). Heat transfer analyses are discussed by converting the given partial differential equation into a nonlinear ordinary differential equation using the similarity transformation and solved using an approximate analytical method, namely, the optimal homotopy analysis method (OHAM), to obtain an approximate analytical solution of the nonlinear problem that analyzes the problem. The BVPh 2.0 package function of Mathematica is used to obtain the numerical results. The results of important parameters such as the magnetic field parameter, unsteady parameter, stretching parameter, Prandtl number, Eckert number, and kinematic parameter for both velocity and temperature profiles are plotted and discussed. The convergence control parameter of the approximate analytical method is obtained up to the 25th iteration using the BVPh 2.0 package. The skin friction coefficient and Nusselt number are explained in tabular form.

Suggested Citation

  • Ali Rehman & Zabidin Salleh, 2021. "Analytical Investigation of Magnetic Field on Unsteady Boundary Layer Stagnation Point Flow of Water-Based Graphene Oxide-Water and Graphene Oxide-Ethylene Glycol Nanofluid over a Stretching Surface," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-8, March.
  • Handle: RePEc:hin:jnlmpe:8897111
    DOI: 10.1155/2021/8897111
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8897111.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8897111.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8897111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8897111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.