Author
Listed:
- Zhenwu Wang
- Chao Qin
- Benting Wan
- William Wei Song
- Guoqiang Yang
Abstract
The chicken swarm optimization (CSO) algorithm is a new swarm intelligence optimization (SIO) algorithm and has been widely used in many engineering domains. However, there are two apparent problems with the CSO algorithm, i.e., slow convergence speed and difficult to achieve global optimal solutions. Aiming at attacking these two problems of CSO, in this paper, we propose an adaptive fuzzy chicken swarm optimization (FCSO) algorithm. The proposed FCSO uses the fuzzy system to adaptively adjust the number of chickens and random factors of the CSO algorithm and achieves an optimal balance of exploitation and exploration capabilities of the algorithm. We integrate the cosine function into the FCSO to compute the position update of roosters and improve the convergence speed. We compare the FCSO with eight commonly used, state-of-the-art SIO algorithms in terms of performance in both low- and high-dimensional spaces. We also verify the FCSO algorithm with the nonparametric statistical Friedman test. The results of the experiments on the 30 black-box optimization benchmarking (BBOB) functions demonstrate that our FCSO outperforms the other SIO algorithms in both convergence speed and optimization accuracy. In order to further test the applicability of the FCSO algorithm, we apply it to four typical engineering problems with constraints on the optimization processes. The results show that the FCSO achieves better optimization accuracy over the standard CSO algorithm.
Suggested Citation
Zhenwu Wang & Chao Qin & Benting Wan & William Wei Song & Guoqiang Yang, 2021.
"An Adaptive Fuzzy Chicken Swarm Optimization Algorithm,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, March.
Handle:
RePEc:hin:jnlmpe:8896794
DOI: 10.1155/2021/8896794
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8896794. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.