IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8874057.html
   My bibliography  Save this article

Safety Investment Decision Problem without Probability Distribution: A Robust Optimization Approach

Author

Listed:
  • Chunlin Xin
  • Jianwen Zhang
  • Chia-Huei Wu
  • Sang-Bing Tsai

Abstract

Accidents occur frequently, causing huge losses to enterprises and individuals. Safety investment is an important means to prevent accidents, but how much to invest is a dilemma. Previous studies have assumed that the demand of safety investment follows some probability distribution. In practice, the distribution information of safety investment is usually limited or difficult to obtain, i.e., it is unknown. To deal with this kind of problem without a probability distribution, we construct the measures of marginal accident loss (MAL) and marginal opportunity loss (MOL) from the perspective of demand uncertainty. Robust optimization technology is utilized to establish three robust optimization models, which are the absolute robust models (ARM), deviation robust models (DRM), and relative robust models (RRM). The results of numerical analysis show that MAL is positively correlated with safety investment and MOL is negatively correlated with the uncertainty of safety investment. The above robust optimization models in this study can be applied to different enterprise’s risk scenarios. ARM, DRM, and RRM are suitable for high- and nonhigh-risk industries and other industries, respectively.

Suggested Citation

  • Chunlin Xin & Jianwen Zhang & Chia-Huei Wu & Sang-Bing Tsai, 2020. "Safety Investment Decision Problem without Probability Distribution: A Robust Optimization Approach," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, November.
  • Handle: RePEc:hin:jnlmpe:8874057
    DOI: 10.1155/2020/8874057
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8874057.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8874057.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8874057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vairaktarakis, George L., 2000. "Robust multi-item newsboy models with a budget constraint," International Journal of Production Economics, Elsevier, vol. 66(3), pages 213-226, July.
    2. S. L. Tang & K. C. Ying & W. Y. Chan & Y. L. Chan, 2004. "Impact of social safety investments on social costs of construction accidents," Construction Management and Economics, Taylor & Francis Journals, vol. 22(9), pages 937-946.
    3. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    4. Hausken, Kjell & Zhuang, Jun, 2013. "The impact of disaster on the strategic interaction between company and government," European Journal of Operational Research, Elsevier, vol. 225(2), pages 363-376.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    4. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    5. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    6. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    7. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    8. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    9. Zhang, Bin, 2012. "Multi-tier binary solution method for multi-product newsvendor problem with multiple constraints," European Journal of Operational Research, Elsevier, vol. 218(2), pages 426-434.
    10. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    11. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    12. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    13. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    14. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    15. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    16. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    17. Rashed Khanjani-Shiraz & Ali Babapour-Azar & Zohreh Hosseini-Noudeh & Panos M. Pardalos, 2022. "Distributionally robust maximum probability shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 140-167, January.
    18. Shi, Jianmai & Zhang, Guoqing, 2010. "Multi-product budget-constrained acquisition and pricing with uncertain demand and supplier quantity discounts," International Journal of Production Economics, Elsevier, vol. 128(1), pages 322-331, November.
    19. Khoirunnisa Rohadatul Aisy Muslihin & Endang Rusyaman & Diah Chaerani, 2022. "Conic Duality for Multi-Objective Robust Optimization Problem," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    20. Walid Ben-Ameur & Adam Ouorou & Guanglei Wang & Mateusz Żotkiewicz, 2018. "Multipolar robust optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 395-434, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8874057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.