IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8865843.html
   My bibliography  Save this article

Research of Single Image Rain Removal Algorithm Based on LBP-CGAN Rain Generation Method

Author

Listed:
  • Ping Xue
  • Hai He

Abstract

Rain has an undesirable negative effect on the clarity of the collected images. In situation where images are captured in rain, it can lead to a loss of information and disability in reflecting real images of the situation. Consequently, rain has become an obstacle in outdoor scientific research studies. The reason why images captured in rain are difficult to process is due to the indistinguishable interactions between the background features and rain textures. Since current image data are only processed with the CNN (convolutional neural network) model, a trained neural network to remove rain and obtain clear images, the resulted images are either insufficient or excessive from standard results. In order to achieve more ideal results of clearer images, series of additional methods are taken place. Firstly, the LBP (local binary pattern) method is used to extract the texture features of rain in the image. Then, the CGAN (conditional generative adversarial network) model is constructed to generate rain datasets according to the extracted rain characteristics. Finally, the existing clear images, rain datasets generated by CGAN, as well as the images with rain are used for convolution operation to remove rain from the images, and the average value of PSNR (peak signal to noise ratio) can reach 38.79 by using this algorithm. Moreover, a large number of experiments are done and have proven that this joint processing method is able to successfully and effectively generate clear images despite the rain.

Suggested Citation

  • Ping Xue & Hai He, 2021. "Research of Single Image Rain Removal Algorithm Based on LBP-CGAN Rain Generation Method," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, July.
  • Handle: RePEc:hin:jnlmpe:8865843
    DOI: 10.1155/2021/8865843
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8865843.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/8865843.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8865843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingdi Hu & Chenrui Wang & Jingbing Yang & Yi Wu & Jiulun Fan & Bingyi Jing, 2022. "Rain Rendering and Construction of Rain Vehicle Color -24 Dataset," Mathematics, MDPI, vol. 10(17), pages 1-18, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8865843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.