Author
Listed:
- Shabnam Shahzadi
- Xianwen Fang
- David Anekeya Alilah
Abstract
For exploitation and extraction of an event’s data that has vital information which is related to the process from the event log, process mining is used. There are three main basic types of process mining as explained in relation to input and output. These are process discovery, conformance checking, and enhancement. Process discovery is one of the most challenging process mining activities based on the event log. Business processes or system performance plays a vital role in modelling, analysis, and prediction. Recently, a memoryless model such as exponential distribution of the stochastic Petri net has gained much attention in research and industry. This paper uses time perspective for modelling and analysis and uses stochastic Petri net to check the performance, evolution, stability, and reliability of the model. To assess the effect of time delay in firing the transition, stochastic reward net model is used. The model can also be used in checking the reliability of the model, whereas the generalized stochastic Petri net is used for evaluation and checking the performance of the model. is used to analyze the probability of state transition and the stability from one state to another. However, in process mining, logs are used by linking log sequence with the state and, by this, modelling can be done, and its relation with stability of the model can be established.
Suggested Citation
Shabnam Shahzadi & Xianwen Fang & David Anekeya Alilah, 2021.
"Role of Stochastic Petri Net (SPN) in Process Discovery for Modelling and Analysis,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-7, June.
Handle:
RePEc:hin:jnlmpe:8699164
DOI: 10.1155/2021/8699164
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8699164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.