Author
Abstract
The main objective of this paper is to present a new clustering algorithm for metadata trees based on K-prototypes algorithm, GSO (glowworm swarm optimization) algorithm, and maximal frequent path (MFP). Metadata tree clustering includes computing the feature vector of the metadata tree and the feature vector clustering. Therefore, traditional data clustering methods are not suitable directly for metadata trees. As the main method to calculate eigenvectors, the MFP method also faces the difficulties of high computational complexity and loss of key information. Generally, the K-prototypes algorithm is suitable for clustering of mixed-attribute data such as feature vectors, but the K-prototypes algorithm is sensitive to the initial clustering center. Compared with other swarm intelligence algorithms, the GSO algorithm has more efficient global search advantages, which are suitable for solving multimodal problems and also useful to optimize the K-prototypes algorithm. To address the clustering of metadata tree structures in terms of clustering accuracy and high data dimension, this paper combines the GSO algorithm, K-prototypes algorithm, and MFP together to study and design a new metadata structure clustering method. Firstly, MFP is used to describe metadata tree features, and the key parameter of categorical data is introduced into the feature vector of MFP to improve the accuracy of the feature vector to describe the metadata tree; secondly, GSO is combined with K-prototypes to design GSOKP for clustering the feature vector that contains numeric data and categorical data so as to improve the clustering accuracy; finally, tests are conducted with a set of metadata trees. The experimental results show that the designed metadata tree clustering method GSOKP-FP has certain advantages in respect to clustering accuracy and time complexity.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8690418. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.