Author
Listed:
- Haimeng Sun
- Xiantao Jiang
Abstract
With the continuous in-depth exploration of life sciences, bioinformatics based on life sciences, computer algorithms, and statistics have gradually developed. The research of bioinformatics mainly focuses on the study of genes, and the structural characteristics of genes lead to a large amount of extremely complex data in the study of bioinformatics. Analyzing data in bioinformatics research requires accurate calculation by computer algorithms. However, common computer algorithms such as the dynamic programming algorithm and the genetic algorithm have the disadvantages of large memory or inaccurate optimization. Combining the ant colony algorithm (ACA) and GA can give the advantages of the two methods that should be fully utilized to efficiently analyze the biological information data. In this paper, the ant colony fusion genetic algorithm (ACA-GA), GA, and dynamic programming algorithm are used to compare and analyze the sensitivity, convergence speed, sequence alignment accuracy, and required memory space of gene sequences. The experimental results show that compared with ACA-GA, the dynamic programming algorithm has the advantage of finding the optimal alignment of 100%, but the memory required is too large, the memory required is more than 10 times that of the ant colony fusion genetic algorithm and the sensitivity is not as good as ACA-GA. The convergence speed of ACA-GA is faster than the gene comparison speed of GA and the accuracy is 2.6% better than that of GA on average. ACA-GA has the advantages of GA and ACA, which can improve the computational efficiency of biological data in bioinformatics.
Suggested Citation
Haimeng Sun & Xiantao Jiang, 2022.
"Construction of Computer Algorithms in Bioinformatics of the Fusion Genetic Algorithm,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-8, September.
Handle:
RePEc:hin:jnlmpe:8632490
DOI: 10.1155/2022/8632490
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8632490. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.