Author
Listed:
- Hongbo Liu
- Guodong Sun
- Dexu Geng
- Junye Li
- Le Anh Tuan
Abstract
An antagonistic pneumatic bidirectional rotary flexible joint was developed to improve both safety and environmental adaptability of service robots and associated human interactions. The joint comprises two semicircular rotary actuators with positive and negative symmetrical distributions and a pneumatic brake. As such, it achieves forward and reverse rotations, and its damping and braking are adjustable in real time, enabling it to maintain its position. According to the force/torque balance at the free end of the rotary actuator, the rotation angle static model was established. The relationship between the actuator rotation angle, driving torque, impedance torque, and air pressure was obtained experimentally. The brake airbag was manufactured using additive manufacturing and silicone gel casting technologies. The mathematical model of the braking torque was established next, and the model was verified through experiments. Furthermore, an experimental system was constructed to carry out the air pressure-angle, air pressure-torque, and speed response experiments without the load on the joint. The results have shown that the joint can achieve any position within ± 68.5° when the driving air pressure varies from 0 to 0.30 MPa; the time required to reach the maximum angle was 0.85 s. The joint has shown good adjustable damping characteristics. Lastly, the braking torque reached 4.21 Nm at 0.32 MPa, effectively maintaining the position.
Suggested Citation
Hongbo Liu & Guodong Sun & Dexu Geng & Junye Li & Le Anh Tuan, 2021.
"Study on the Structure and Performance of an Antagonistic Pneumatic Bidirectional Rotary Joint,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, November.
Handle:
RePEc:hin:jnlmpe:8584798
DOI: 10.1155/2021/8584798
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8584798. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.