Author
Listed:
- Wangping Qian
- Taiyue Qi
- Xiao Liang
- Shaojie Qin
- Zongyang Li
- Yan Li
Abstract
The water-bearing body (WBB) behind tunnel linings has been some of the main causes of damage in operational tunnels. The WBB directly affects the serviceability state of tunnel linings; thus, determining a method to detect this problem is a widely studied issue regarding tunnel maintenance. In this paper, a vehicle-borne transient electromagnetic method (VBTEM) is put forward for the first time to detect WBB behind tunnel linings, and the aim is to fully investigate the transient electromagnetic response and numerical characteristics of the WBB behind tunnel linings. Firstly, the transient electromagnetic response curves of the WBB and surrounding rock are obtained and compared in detail by using the finite element method. Then, taking the distance, thickness, radius, and resistivity of the WBB as variable parameters, the parametric sensitivity rule of the response curve of the WBB is analyzed. Finally, a dimensionless response curve is proposed, a mathematical extraction equation is established, and seven numerical characteristic parameters are proposed and extracted. Based on seven numerical characteristic parameters, the technical parameters of the VBTEM equipment are put forward. The results illustrate that the transient electromagnetic response of the WBB is obviously different from that of surrounding rock. The seven numerical characteristic parameters of the dimensionless curve of the WBB can represent the entire response curve of the WBB. The results reveal that the first time gate of the VBTEM equipment needs to be less than 0.05 μ s for short-distance problem, and the time span needs to reach four time spans at least. The research results can provide valuable technical references for the application of VBTEM.
Suggested Citation
Wangping Qian & Taiyue Qi & Xiao Liang & Shaojie Qin & Zongyang Li & Yan Li, 2020.
"Vehicle-Borne Transient Electromagnetic Numerical Characteristic Parameter of Water-Bearing Body behind Tunnel Linings,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, March.
Handle:
RePEc:hin:jnlmpe:8514913
DOI: 10.1155/2020/8514913
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8514913. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.