IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8514765.html
   My bibliography  Save this article

A Trial-and-Error Congestion Pricing Method for Day-to-Day Dynamic Network Flows considering Travelers’ Heterogeneous Inertia Patterns

Author

Listed:
  • Bojian Zhou
  • Min Xu
  • Yong Zhang

Abstract

This study proposes a trial-and-error congestion pricing method to achieve system optimum under day-to-day flow dynamics with unknown demand. Travelers are assumed to adjust their route choice day by day so that the resultant traffic flow under a trial of tolls evolves from one day to another. We rigorously demonstrate that if psychological inertia is considered in travelers’ day-to-day route choice behavior, the convergence of the proposed trial-and-error congestion pricing method can be guaranteed without requiring the observed network flows to be in user equilibrium. Furthermore, the proposed method also allows tolls to be updated at irregular time intervals, which greatly relaxes the implementation requirements of existing congestion pricing schemes in the literature. This study is very significant from a practical point of view because it provides a flexibility approach that greatly reduces the implementation time of the traditional trial-and-error congestion pricing method. Numerical experiments are conducted to validate our theoretical findings.

Suggested Citation

  • Bojian Zhou & Min Xu & Yong Zhang, 2019. "A Trial-and-Error Congestion Pricing Method for Day-to-Day Dynamic Network Flows considering Travelers’ Heterogeneous Inertia Patterns," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-17, November.
  • Handle: RePEc:hin:jnlmpe:8514765
    DOI: 10.1155/2019/8514765
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8514765.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8514765.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8514765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyuan Chen & Yiran Wang & Yuan Zhang, 2021. "A Trial-and-Error Toll Design Method for Traffic Congestion Mitigation on Large River-Crossing Channels in a Megacity," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    2. Chen, Xinyuan & Zhang, Wei & Guo, Xiaomeng & Liu, Zhiyuan & Wang, Shuaian, 2021. "An improved learning-and-optimization train fare design method for addressing commuting congestion at CBD stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8514765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.