IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8510253.html
   My bibliography  Save this article

A Mathematical Model and a Simulated Annealing Algorithm for Balancing Multi-manned Assembly Line Problem with Sequence-Dependent Setup Time

Author

Listed:
  • Wucheng Yang
  • Wenming Cheng

Abstract

Multi-manned assembly lines have been widely applied to the industrial production, especially for large-sized products such as cars, buses, and trucks, in which more than one operator in the same station simultaneously performs different tasks in parallel. This study deals with a multi-manned assembly line balancing problem by simultaneously considering the forward and backward sequence-dependent setup time (MALBPS). A mixed-integer programming is established to characterize the problem. Besides, a simulated annealing algorithm is also proposed to solve it. To validate the performance of the proposed approaches, a set of benchmark instances are tested and the lower bound of the proposed problem is also given. The results demonstrated that the proposed algorithm is quite effective to solve the problem.

Suggested Citation

  • Wucheng Yang & Wenming Cheng, 2020. "A Mathematical Model and a Simulated Annealing Algorithm for Balancing Multi-manned Assembly Line Problem with Sequence-Dependent Setup Time," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-16, May.
  • Handle: RePEc:hin:jnlmpe:8510253
    DOI: 10.1155/2020/8510253
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8510253.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/8510253.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8510253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreu-Casas, Enric & García-Villoria, Alberto & Pastor, Rafael, 2022. "Multi-manned assembly line balancing problem with dependent task times: a heuristic based on solving a partition problem with constraints," European Journal of Operational Research, Elsevier, vol. 302(1), pages 96-116.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Mao, Zhaofang & Sun, Yiting & Fang, Kan & Huang, Dian & Zhang, Jiaxin, 2024. "Balancing and scheduling of assembly line with multi-type collaborative robots," International Journal of Production Economics, Elsevier, vol. 271(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8510253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.