IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8503252.html
   My bibliography  Save this article

An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise

Author

Listed:
  • Shouwen Ji
  • Xiaojing Wang
  • Wenpeng Zhao
  • Dong Guo

Abstract

Sales forecasting is even more vital for supply chain management in e-commerce with a huge amount of transaction data generated every minute. In order to enhance the logistics service experience of customers and optimize inventory management, e-commerce enterprises focus more on improving the accuracy of sales prediction with machine learning algorithms. In this study, a C-A-XGBoost forecasting model is proposed taking sales features of commodities and tendency of data series into account, based on the XGBoost model. A C-XGBoost model is first established to forecast for each cluster of the resulting clusters based on two-step clustering algorithm, incorporating sales features into the C-XGBoost model as influencing factors of forecasting. Secondly, an A-XGBoost model is used to forecast the tendency with the ARIMA model for the linear part and the XGBoost model for the nonlinear part. The final results are summed by assigning weights to forecasting results of the C-XGBoost and A-XGBoost models. By comparison with the ARIMA, XGBoost, C-XGBoost, and A-XGBoost models using data from Jollychic cross-border e-commerce platform, the C-A-XGBoost is proved to outperform than other four models.

Suggested Citation

  • Shouwen Ji & Xiaojing Wang & Wenpeng Zhao & Dong Guo, 2019. "An Application of a Three-Stage XGBoost-Based Model to Sales Forecasting of a Cross-Border E-Commerce Enterprise," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, September.
  • Handle: RePEc:hin:jnlmpe:8503252
    DOI: 10.1155/2019/8503252
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8503252.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/8503252.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8503252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lechtenberg, Sandra & Hellingrath, Bernd, 2021. "Applications of artificial intelligence in supply chain management: Identification of main research fields and greatest industry interests," ERCIS Working Papers 37, University of Münster, European Research Center for Information Systems (ERCIS).
    2. Gaofeng Guan & Dong Liu & Jiayang Zhai, 2022. "Factors Influencing Consumer Satisfaction of Fresh Produce E-Commerce in the Background of COVID-19—A Hybrid Approach Based on LDA-SEM-XGBoost," Sustainability, MDPI, vol. 14(24), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8503252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.