IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/849286.html
   My bibliography  Save this article

Stock Market Trading Rules Discovery Based on Biclustering Method

Author

Listed:
  • Yun Xue
  • Zhiwen Liu
  • Jie Luo
  • Zhihao Ma
  • Meizhen Zhang
  • Xiaohui Hu
  • Qiuhua Kuang

Abstract

The prediction of stock market’s trend has become a challenging task for a long time, which is affected by a variety of deterministic and stochastic factors. In this paper, a biclustering algorithm is introduced to find the local patterns in the quantized historical data. The local patterns obtained are regarded as the trading rules. Then the trading rules are applied in the short term prediction of the stock price, combined with the minimum-error-rate classification of the Bayes decision theory under the assumption of multivariate normal probability model. In addition, this paper also makes use of the idea of the stream mining to weaken the impact of historical data on the model and update the trading rules dynamically. The experiment is implemented on real datasets and the results prove the effectiveness of the proposed algorithm.

Suggested Citation

  • Yun Xue & Zhiwen Liu & Jie Luo & Zhihao Ma & Meizhen Zhang & Xiaohui Hu & Qiuhua Kuang, 2015. "Stock Market Trading Rules Discovery Based on Biclustering Method," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-13, March.
  • Handle: RePEc:hin:jnlmpe:849286
    DOI: 10.1155/2015/849286
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/849286.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/849286.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/849286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    2. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Market Timing with Moving Averages for Fossil Fuel and Renewable Energy Stocks," Documentos de Trabajo del ICAE 2018-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:849286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.