Author
Listed:
- Heng Li
- Hui Wang
- Gaowei Yue
- Fasuo Zhao
- Wenzhe Li
Abstract
For the problems of unreasonable force and large deformation of traditional antislide structure system, three new arch antislide pile-wall structure systems are designed for a loess landslide treatment project in Northern Shanxi province. The working performances of four kinds of antislide structures are numerically simulated and analyzed to realize the optimization of the antislide structure system. The results show that the arch antislide pile-wall structure system is a rigid connection between the piles and cap beam, and the antislide pile, cap beam, and sliding bed soil form a spatial nearly rigid structure. Cap beam can better transfer the bending moment generated by the larger thrust in the landslide middle to the piles with less force on both sides of the landslide, so that the stress and deformation of the whole antislide system tend to be uniform, which makes the antislide system “joint operation.” And this structural form increases the overall stiffness and bending capacity and reduces the possibility that the middle pile is destroyed first and loses its working capacity due to large thrust. Compared with the traditional antislide structure system (Model-1), the average displacement of the pile head is reduced by about 60%, and the total control bending moment of the system is reduced by about 6%. The purpose of Model-3 and Model-4 (anchorage arch antislide pile-wall structure system and pull-rod arch antislide pile-wall structure system) is to restrict the deformation of cap beam in both positive and negative directions of x -axis in arch antislide pile-wall structure system, which plays a certain role in coordinating the deformation of antislide structure and better coordinating the stress of each pile. The arch antislide pile-wall structure system (Model-2), anchorage arch antislide pile-wall structure system (Model-3), and pull-rod arch antislide pile-wall structure system (Model-4) can better adapt and adjust the unbalanced thrust between the landslide piles; therefore, they have higher structural robustness than that of traditional antislide structure system. When achieving the management target with a 95% structural reliability probability of the same landslide, the structural robust degrees of Model-1, Model-2, and Model-4 are 0.58, 0.76, and 0.81, respectively. Therefore, the pull-rod arch antislide pile-wall structure system (Model-4) has the best performance among the other antislide structures. These studies lay a foundation for the engineering structural optimization of arch antislide pile-wall structure system.
Suggested Citation
Heng Li & Hui Wang & Gaowei Yue & Fasuo Zhao & Wenzhe Li, 2021.
"Arch Antislide Pile-Wall Structure System: Model and Optimization,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, February.
Handle:
RePEc:hin:jnlmpe:8489627
DOI: 10.1155/2021/8489627
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8489627. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.