IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/8471283.html
   My bibliography  Save this article

A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs

Author

Listed:
  • Guixia He
  • Jiaquan Gao

Abstract

Sparse matrix-vector multiplication (SpMV) is an important operation in scientific computations. Compressed sparse row (CSR) is the most frequently used format to store sparse matrices. However, CSR-based SpMVs on graphic processing units (GPUs), for example, CSR-scalar and CSR-vector, usually have poor performance due to irregular memory access patterns. This motivates us to propose a perfect CSR-based SpMV on the GPU that is called PCSR. PCSR involves two kernels and accesses CSR arrays in a fully coalesced manner by introducing a middle array, which greatly alleviates the deficiencies of CSR-scalar (rare coalescing) and CSR-vector (partial coalescing). Test results on a single C2050 GPU show that PCSR fully outperforms CSR-scalar, CSR-vector, and CSRMV and HYBMV in the vendor-tuned CUSPARSE library and is comparable with a most recently proposed CSR-based algorithm, CSR-Adaptive. Furthermore, we extend PCSR on a single GPU to multiple GPUs. Experimental results on four C2050 GPUs show that no matter whether the communication between GPUs is considered or not PCSR on multiple GPUs achieves good performance and has high parallel efficiency.

Suggested Citation

  • Guixia He & Jiaquan Gao, 2016. "A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-12, April.
  • Handle: RePEc:hin:jnlmpe:8471283
    DOI: 10.1155/2016/8471283
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/8471283.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/8471283.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/8471283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:8471283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.